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Abstract The biological effects of the IGFs are mediated through interaction with specific cell surface receptors. It 
has been previously reported that mitogenic activation of T-lymphocytes by phytohernagglutinin (PHA) is associated 
with increased IGF-I receptor content. However, the mechanisms which regulate IGF-I receptor expression during 
T-lymphocyte activation are unknown. To explore further the regulation of IGF-I receptor expression in T-cells, we 
investigated IGF-l receptor content and mRNA abundance in T-lymphocytes after stimulation either by PHA or OKT-3, 
the latter being a monoclonal antibody directed against the CD-3 antigen of the T-cell receptor. IGF-I binding in T-cells 
demonstrated increased IGF-I receptor content after stimulation by both PHA and OKT-3. Peak binding was induced 
after 72 h of treatment with PHA and 48 h of treatment with OKT-3. Affinity cross-linking of '2SI-IGF-I to T-cell 
membranes demonstrated a single - 130 kDa band which was increased after treatment with PHA or OKT-3. This band 
was inhibited by the addition of d R 3 ,  a monoclonal antibody to the IGF-I receptor. Both PHA and OKT-3 increased 
IGF-I receptor mRNA abundance with peak increases at 20 h and 60 h, respectively. Parallel increases in IGF-I receptor 
and p-actin mRNA abundance were observed, consistent with previous studies demonstrating increased actin gene 
expression after T-cell activation. Thus, the increase in IGF-I receptor mRNA abundance markedly preceded the increase 
in IGF-I receptor content after PHA stimulation, but the increase in IGF-I receptor mRNA abundance followed the 
increase in IGF-I receptor content after OKT-3. These studies suggest, therefore, that IGF-I receptor content in both of 
these activated cells is not regulated primarily at the level of steady state mRNA. 
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Insulin-like growth factor (IGF) I and IGF-I1 
exert a broad range of metabolic and mitogenic 
effects in many cell types through hormonal as 
well as autocrine/paracrine mechanisms [ 11. The 
biological activities of these growth factors are 
mediated through interaction with specific cell 
surface receptors. The IGF-I receptor, which 
can mediate the mitogenic effects of both IGF-I 
and IGF-I1 in some tissues [2], is a membrane 
glycoprotein of Mr 300-350 kD, consisting of 
two extracellular a-subunits (Mr - 135 kDa) 
and two transmembrane P-subunits (Mr 90-95 
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kDa) [3,4]. When the ligand binds to the extracel- 
lular a-subunits, the @-subunits, which have 
intrinsic tyrosine kinase activity, become acti- 
vated and IGF action ensues [5,6]. The IGF-I 
receptor is expressed in many cell types includ- 
ing human blood cells such as erythrocytes [7,8], 
platelets 1191, and peripheral mononuclear lym- 
phocytes (PBML) llO,ll]. The IGF-I receptor 
also has been demonstrated on transformed lym- 
phocytes including human leukemic T- and B-cell 
lines [12-151. 

Activation of T-cells through the T-cell recep- 
tor complex results in a cascade of events which 
lead to  DNA synthesis and clonal cell prolifera- 
tion [16,17]. Activated T-cells express cell sur- 
face receptors for cytokines and growth factors, 
including interleukin-2 and insulin [ 18,191. Re- 
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cent studies have demonstrated that phytohe- 
magglutinin (PHA)-induced activation of T-cells 
results in increased expression of receptors for 
both IGF-I and IGF-I1 [11,14]. In addition, an 
antiserum against IGF-I reduces the response of 
PBML to PHA suggesting that IGF-I may act as 
a growth factor for the proliferation of T-lympho- 
cytes [201. Furthermore, treatment of resting 
and activated T-cells with IGF-I results in in- 
creased thymidine incorporation and increased 
T-cell migration [ 14,20,21]. The presence of spe- 
cific IGF-I receptors on T-cells and the expres- 
sion of IGF peptides by activated mononuclear 
phagocytes [22,23] suggest that IGFs may stim- 
ulate T-cells through paracrine mechanisms. The 
mechanisms which regulate IGF-I receptor ex- 
pression during T-lymphocyte activation, how- 
ever, are unknown. To explore further the regu- 
lation of IGF-I receptor expression in T-cells, we 
investigated IGF-I receptor content and recep- 
tor mRNA abundance in normal T-lymphocytes 
after stimulation by OKT-3, a monoclonal anti- 
body directed against the CD-3 antigen of the 
T-cell receptor, or after stimulation by PHA. 

MATERIALS AND METHODS 
Materials 

Recombinant IGF-I was a gift from Ciba- 
Geigy, Switzerland. IGF-I1 was purchased from 
Bissendorf, FRG. 1251-IGF-I was purchased from 
Amersham, UK; PHA from Wellcome Research 
Laboratories, USA; OKT-3 from Ortho-Diagnos- 
tic, FRG; and fluoresceinisothiocyanate (FITC) 
antihuman IgG from Behring Werke, FRG. 
a-IR-3 [24], a monoclonal antibody to the IGF-I 
receptor, was a gift from Dr. S. Jacobs. A 3.2 kb 
cDNA for the human IGF-I receptor was ob- 
tained as previously described [25]. p-actin cDNA 
was kindly provided by Cleveland et al. [261. 

Cells 

Human PBML were isolated from buffy coats 
[27], and T-lymphocytes were further isolated 
by the sheep erythrocyte rosette technique [28]. 
B-lymphocytes were isolated from the remain- 
ing cell fraction by Sephadex G10 chromatogra- 
phy [291. The enriched cell fractions were tested 
for vitality (> 95%) using 0.25% trypan blue 
and for homogeneity ( > 95%) by indirect immu- 
nofluorescence [28] using the T-cell specific anti- 
body OKT-3 and by direct immunofluorescence 
[28] using an FITC antihuman IgG for B-cells. 

T-lymphocytes were maintained in RPMI 1640 
plus 10% fetal calf serum (FCS) in a 5% C0,i 
95% humidified air environment. 

IGF-I Receptor Binding Studies 

lo6 cells were incubated at  10°C for 3 h with 
4.5 pM 1251-IGF-I and increasing concentrations 
of unlabeled IGF-I in 2 ml Hepes buffer, pH 7.4 
(100 mM Hepes, 120 mM NaC1, 5 mM KC1, 1.2 
mM MgSO,, 10 mM Dextrose, 1 mM EDTA, 15 
mM sodium acetate, and 1% BSA). Binding reac- 
tions were stopped by addition of 0.5 ml ice-cold 
Hepes buffer. The cells were centrifuged and the 
pellet was counted in a gamma counter. Binding 
was corrected for non-specific '251-IGF-I binding 
as determined in the presence of 130 nM unla- 
beled IGF-I. Scatchard analysis of the binding 
data was performed using the Ligand program 
1301. 

Chemical Cross-linking of 'ZSI-IGF-I to Cell 
Membranes 

12jI-IGF-I was chemically cross-linked to 2- 
3 x lo7 intact cells with disuccinimidyl suberate 
(DSS) at  a final concentration of 0.4 mM as 
previously described [9]. Cells were homoge- 
nized and centrifuged at 1,500g for 30 min and 
100,OOOg for 90 min at 4°C. The resulting mem- 
brane pellet was resuspended in Laemmli buffer 
[311 with 5% v/v 2-mercaptoethanol and sepa- 
rated on a 6% NaDodSO, (SDS) polyacrylamide 
gel, and autoradiography was carried out. 

IGF-I Receptor Gene Expression 

Poly(A)+ RNA was isolated from 2 x 10' PMBL 
by lysing the cells in 1% SDS in a Tris buffer 
containing 0.2 mg/ml proteinase K [32]. Poly(A)+ 
RNA was then directly isolated from the cell 
lysate by adding oligo(dT)-cellulose [32]. After 
being normalized by hybridization with 32P- 
labeled oligo(dT) [32,33], 0.5 wg of poly(A)+ RNA 
was blotted onto a nitrocellulose filter and hy- 
bridized with a human IGF-I receptor cDNA or 
a p-actin cDNA. Autoradiography was carried 
out following a final wash of 0.1 x SSC/O.l% 
SDS at  50°C. 

RESULTS 

To determine the optimal time and mitogen 
concentration for '251-IGF-I binding to activated 
T-lymphocytes, time course and dose-response 
studies were carried out. When isolated T-cells 
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were activated by OKT-3 or PHA, maximal 1251- 
IGF-I binding was measured at concentrations 
of 10 ng/ml and 1 pg/mI, respectively (Fig. 1A). 
Using these concentrations, maximal binding of 
'251-IGF-I was measured 48 h after addition of 
OKT-3 and 72 h after addition of PHA to the 
culture media (Fig. 1B). 

To examine the hypothesis that IZ5I-IGF-I is 
principally bound to the IGF-I receptor, we cross- 
linked this radiolabeled ligand to T-cell mem- 
branes. The membrane fraction was then solubi- 
lized and separated by SDS gel electrophoresis 
under reducing conditions. In control and in 
T-lymphocytes activated by OKT-3 (10 ng/ml, 
48 h) and PHA (1 Fg/ml, 72 h), a single - 130 
kDa band was detected (Fig. 2). The binding of 
'251-IGF-I to the IGF-I receptor a-subunit was 
completely inhibited by the addition of a-IR-3 
(50 ng/ml) (Fig. 2). 

To determine whether the increased 1251- 
IGF-I binding after OKT-3 or PHA stimulation 
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Fig. 1. Dose response (A) and time course (B) of specific 
'251-ICF-I binding to nontransformed T-cells following stimula- 
tion by PHA or OKT-3. Results are the mean (? SD) of four (A) 
and five (B) independent experiments. 

Fig. 2. Cross-linking of '251-IGF-I to isolated control and acti- 
vated T-cells. In the absence (lanes 1-3) or presence (lane 4) of 
a-IR-3 (50 ng/ml), a monoclonal antibody to the ICF-I receptor, 
2-3 x lo7 cells [control, lane 1; PHA (1 wgiml, 72 h), lanes 2,4; 
O K - 3  (10 @mi, 48 h), lane 31 were incubated with '251-ICF-I. 
Samples were cross-linked with DSS and subjected to electro- 
phoresis and autoradiography as described in Materials and 
Methods. The positions of the Mr standards are indicated. A 
representative experiment is shown. 

reflected changes in receptor content or affinity, 
Scatchard analyses were carried out. OKT-3 
treatment resulted in a 50-60% increase in recep- 
tor content in comparison to control cells (Table 
1). No change in IGF-I receptor affinity was seen 
after OKT-3 treatment. Similar effects on IGF-I 
receptor content and affinity were seen after 
PHA treatment. In contrast, B-lymphocytes did 
not show any specific binding of '251-IGF-I (Ta- 
ble 1). 

To examine IGF-I receptor gene expression in 
mitogen-activated T-cells, poly(A)' RNA was iso- 
lated and probed with an  IGF-I receptor cDNA. 
Time course analysis of IGF-I receptor mRNA 
accumulation following OKT-3 (10 ng/ml) treat- 
ment demonstrated a 60-70% increase in IGF-I 
receptor mRNA abundance at 60 h (Fig. 3A). 
Following PHA (1 pg/ml) treatment, a transient 
increase in IGF-I receptor mRNA abundance 
was seen at  20 h. However, after 60 h, a 50% 
decrease in IGF-I receptor mRNA abundance in 
comparison to control cells was observed. Analy- 
sis of p-actin mRNA abundance was also carried 
out during these time course studies. Following 
incubation of cells with OKT-3, p-actin mRNA 
abundance increased with highest levels noted 
after 60 h, the time at which maximal IGF-I 
receptor mRNA abundance was detected (Fig. 
3B). After PHA treatment there was a transient 
increase in p-actin mRNA at  20 h, paralleling 
the increase in IGF-I receptor mRNA abun- 
dance (Fig. 3B). Subsequently a decline in p-ac- 
tin mRNA was observed. 
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TABLE I. Scatchard Analysis of lZ5I-IGF-I Binding in T-Lymphocytes* 

Control PHA OKT-3 B-lvmuhocvtes 

Kd (nM) 0.16 ? 0.03 0.14 2 0.02 0.20 ? 0.03 n.d.a 
IGF-I receptor sites per cell 390 ? 30 770 ? 45b 610 2 40 n.d. 

*Normal T-Iymphocytes were stimulated for 48 h with OKT-3 (10 ngiml) (n = 4) or for 72 h with PHA (1 Fgiml) (n = 4). 
Binding in B-lymphocytes (n = 4) is also indicated. Values are expressed as mean t S D .  
"n.d. = not detectable. 
bP < 0.05 vs. control T-cells, unpaired t-test. 
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Fig. 3. Time course of ICF-I receptor and p-actin mRNA 
abundance in control and mitogen stimulated normal T-lympho- 
cytes. Poly(A)' RNA was isolated from control and PHA (1 
Fgiml) or Om-3 (10 ngiml) stimulated cells, and slot blotted 
onto a nitrocellulose filter and hybridized with an ICF-I receptor 
(A) or p-actin (B) cDNA. A representative experiment is shown. 

DISCUSSION 

IGF-I receptor expression in human non- 
transformed T-lymphocytes can be increased by 
mitogenic activation of these cells. Stimulation 
of T-lymphocytes by either PHA, in agreement 
with earlier studies [11,14], or by OKT-3 was 
followed by an increase in IGF-I receptor con- 
tent. The present studies demonstrate that the 
increased IGF-I receptor content following treat- 
ment with PHA and OKT-3 was associated with 
increases in IGF-I receptor mRNA abundance. 

The parallel changes in IGF-I receptor and p-ac- 
tin mRNA abundance were consistent with pre- 
vious reports demonstrating increased actin gene 
expression after T-lymphocyte activation [34,35]. 
However, a discordance between IGF-I receptor 
content and gene expression both in PHA- and 
OKT-3-stimulated cells was indicated by the 
observation that peak IGF-I receptor mRNA 
abundance followed peak IGF-I binding in OKT- 
3-stimulated cells and preceeded peak IGF-I 
binding in PHA-treated cells. 

Discordance between IGF-I receptor content 
and gene expression is not unique to T-lympho- 
cytes. Such discordance has been observed dur- 
ing differentiation of mouse 3T3-Ll pre-adipo- 
cytes to adipocytes [36]. In these cells, both 
insulin and IGF-I binding increased with differ- 
entiation [36]. However, while there was a paral- 
lel increase in insulin receptor mRNA abun- 
dance in the mature adipocytes, IGF-I receptor 
mRNA abundance decreased [41. 

Discordance between gene expression and pro- 
tein content has also been described in other 
systems. Mitogen activation of human mononu- 
clear macrophages results in increased expres- 
sion of IGF-I peptide [22,23]. However, while 
IGF-I transcription and nuclear IGF-I mRNA 
abundance increase in these cells, cytoplasmic 
IGF-I mRNA abundance decreases due to de- 
creased mRNA stability [23]. In addition, it has 
been recently reported that adult rats and rab- 
bits express high levels of lactase mRNA at a 
time when lactase content as determined by 
bioassay is very low [371. A similar discrepancy 
between lactase mRNA abundance and enzyme 
activity has been observed in some lactose- 
intolerant humans [373. 

One possible explanation for the discordance 
between IGF-I receptor mRNA abundance and 
receptor content in T-lymphocytes could be an 
increased efficiency of translation of specific 
mRNAs. White et al. [341 described that mito- 
gen activation of bovine lymphocytes by Concon- 
avalin A ( C o d )  induced a fivefold discrepancy 
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of the mRNA and enzymatic activity of orni- 
thine decarboxylase (ODC). This discrepancy 
was consistent with a change in efficiency of 
translation of ODC mRNA as ODC mRNA in 
activated cells was enriched in polysomes 1341. 
Thus, a decrease in the amount of untranslated 
ODC mRNA but an  increase in the amount 
associated with polysomes could result in in- 
creased biosynthesis of the enzyme. 

In summary, IGF-I receptor expression in 
T-lymphocytes is increased either through stim- 
ulation of the CD-3 antigen of the T-cell recep- 
tor or through activation by PHA. However, for 
both mitogens, stimulation of IGF-I receptor 
binding was not mediated primarily via an  in- 
crease in IGF-I receptor RNA abundance. 
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